Lawrence Livermore National Laboratory

Delayed Fission Gammas

Ed Lent and Dave Heinrichs

Presented at the Nuclear Criticality Safety Program Technical Conference at Oak Ridge National Laboratory, March 1-2, 2011

Introduction

LLNL had a DOE NCSP task to test the suitability of ENDF/B-VII.0 delayed fission gamma data for use in criticality accident (dose) assessment

- ENDF/B-VII.0 delayed fission gamma data are not suitable for this application (slides 3 and 4)
- Yanagisawa's results Journal of Nuclear Science and Technology,
 vol. 39, no. 5, 499-505 (2002) look promising
- New work by Ed Lent (LLNL) following Pruett and Yanagisawa

ENDF/B-VII.0

ENDF/B-VII.0 data provided by LLNL

Simulating β -delayed γ 's from fission

Monte-Carlo model (J.Pruet, *et al.* NIM A, 521, 608 (2004))

- Generate fission fragment from England and Rider. ← Monte Carlo
- Follow β-decay chain to stability
- Generally good agreement w/ experiment of Norman et al.

This detailed data should work for dose assessment purposes as well but

UCRL-PRES-225819

Pruet 2004

Putting data in ENDF/B format

- Approximate γ
 spectrum/unit time as
 product of time
 distribution and
 multiplicity:
- $s_{\gamma}(E,E_{\gamma},t)=y(E,E_{\gamma})T(t)$
- In MT=460, MF=1,14
- 3129 lines in ²³⁹Pu, 3262 lines in ²³⁵U
- Data in use in COG transport code

UNCLASSIFIED

Unfortunately, Pruet data way off in energy and multiplicity; e.g., for ²³⁵U:

<u>Nd</u>	Ed	<u>Reference</u>
3.6 g/f 6.66 g/f	2.89 MeV/f 6.22 MeV/f	Pruet (2004) Lent (2010) this work
N/A	6.33(5) MeV/f	ENDF/B-VII.0
6.51 g/f	6.43(30) MeV/f	PhysRevC 6:1023(1972)
6.7 g/f	6.51(30) MeV/f	PhysRevC 7:1173 (1973)
7.45 g/f	7.18(26) MeV/f	PhysRevC 3:373 (1971)
7.9 g/f		PhysRevC 6:1023 (1967)

Ed/Nd = 0.80 MeV/g (Pruet) when it should be $^{\sim}$ 1 MeV/g.

ENDF/B-VII.0 data is not suitable for dose calculations

This was a surprise!

Yanagisawa 2002

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 5, 499–505 (May 2002) provides detailed multiplicity data <u>without spectra</u>.

Way-Wigner T^{-1.2}

Ed Lent digitized and fit Yanagisawa's time-dependent photon multiplicity data

$$n_d = 1.64/T^{7/6}$$
, T > 200 sec

Yanagisawa 2002

Journal of NUCLEAR SCIENCE and TECHNOLOGY, Vol. 39, No. 5, 499-505 (May 2002)

Ed Lent also integrated these equations to determine the cumulative number of delayed photons in the time interval [0, T]:

 $N_d = 0.683 \ln(T + 1.3) - 0.179$, T < 200 sec

 $N_d = 7.51 - 9.84/T^{1/6}$, T > 200 sec

7.51 delayed photons per fission $[0, \infty]$, which is in agreement with the value 7.45 \pm 0.35 given by Peele and Maienschein, Phys. Rev. C 3:373 (1971).

Other researchers report lower values.

LLNL DFG Accomplishments

Ed Lent replicated previous work by Pruett and Yanagisawa by developing new libraries and codes:

COGFY

T.R. England and B.F. Rider database (LA-UR-94-3106, ENDF-349) of fission products (789 FP nuclides for ²³⁵U vs. probability at the instant of fission) – like Pruett

COGDC

JENDL-FPDD2000 containing 1221 FP half-lives, daughter branching ratios, and discrete and/or continuous gamma energy spectra – like Yanagisawa

RadSrc

* Bateman solutions previously developed for gamma emission from α -decay

GetEG

The final piece is a code, GetEG, to put all the above pieces together. The input is **isotope** t, where **isotope** is one of the FY isotopes (e.g., fast pooled neutron induced fission of U235), and t is the time in seconds. Start with the first nuclide in the **isotope**'s fission product list. Use the DC branching ratio data to develop the (various possible) decay chain(s), add the DC half-life data to get the resultant nuclides amplitudes and decay rates at time t, sum the DC discrete and/or continuous gamma energies to get the number of delayed gammas and associated gamma energy spectrum. Weight these results with the appropriate FY probability. Step through the remaining nuclides in the **isotope**'s fission product list in a similar manner, summing the results as you go.

Results (1)

Lent's calculations for ²³⁵U produce delayed FP gamma multiplicities about 4% lower than Yanagisawa's results – **good agreement!**

Using JENDL database instead of England & Rider may result in even better agreement.

JEFF data is also available.

Results (2)

Lent performed FP decay calculations for ²³⁵U out to 1e10 seconds and integrated the data to yield the photons/fission in the time interval [0, T]:

Results (3)

Ed Lent compared his calculated multiplicity for ²³⁵U against measured data ...

Godiva

LAMS-2642

Nelms & Cooper

Health Physics, <u>1</u>, 427, 1959

NRDL

NSE, **29**, 432, 1967

Results (4)

... and Ed Lent compared his calculated <u>spectra</u> for 235 U against LANL (Godiva) measured data at early times (< 1 min) ...

Results (5)

 \dots and Ed Lent compared his calculated <u>spectra</u> for ²³⁵U against Nelms & Cooper measured data later times (1/2 hour to 97 days) \dots

Results (6)

Note:

Lent > NRDL (E > 2 MeV)

... and Ed Lent compared his calculated <u>spectra</u> for ²³⁵U against NRDL measured data late times

Recall:

Lent ≈ LANL (Slide 11)

Lent ≈ Nelms & Cooper (Slide 12)

Results (7) and Conclusions

Ed Lent also <u>normalized</u> and compared calculated <u>spectra</u> for various time intervals

and compared it to the prompt spectrum ...

- (a) Time-dependent multiplicity data with average spectra appear adequate for criticality accident "slide-rule" type calculations (see slide 16).
- (b) This data was proposed for inclusion in ENDF/B-VII at CSEWG (Nov 2010).
- (c) Average parameters (see slide 4):
 6.66 photons/fission
 6.22 MeV/fission
 0.934 MeV/photon

Time-dependent point (not shown) and binned spectra (shown) are also available.

3

Time-dependent line and continuous spectra (not shown) are available. This data may be useful as a fission signature.

Criticality accident slide-rule

Lent's results demonstrate good agreement with the ORNL "slide rule" using:

- COG11 using Yanasigawa's time-dependent ²³⁵U multiplicity data with prompt gamma spectrum
- COG11 using Lent's time-dependent ^{234,235,238}U multiplicity and delayed gamma spectra
- Hand calculated dose (estimated from COG11DFG calculated rate at late times) (fix in progress)

What's next?

- COGDFG library **completed** for fast neutron induced delayed fission gammas for: Th232, U233, U234, U235, U236, U238, Pu239, Pu240, Pu241.
- More testing needed (similar to U235 testing completed in 2010)
- Need COGDFG libraries for thermal neutron induced fission of:
 Th227, Th229, U232, U233, U235, Np237, Pu239, Pu240, Pu241, Pu242, Am241, Am242, Cm245, Cf249, Cf251, Es254, and Fm255;
- Need COGDFG libraries for the fast neutron induced fission of:
 Pa231, U237, Np237, Np238, Pu238, Pu242, Am241, Am243, Cm242, Cm243, Cm244, Cm246, and Cm248;
- Need COGDFG libraries for high energy (14 MeV) neutron induced fission of:
 Th232, U233, U234, U235, U236, U238, Np237, Pu239, Pu240, Pu242, and Am241;
- Need COGDFG libraries for spontaneous fission of:
 U238, Cm244, Cm246, Cm248, Cf250, Cf252, Es253, Fm254, and Fm256.
- Need Criticality Slide Rule for Plutonium (Proposal)

